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Location of the Collapsed Phase for 
Two-Dimensional, Directed, Interacting Polymers 
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By mapping a model for a directed polymer onto a novel polygon problem, 
we give a physically appealing proof for the location of the boundary of the 
collapsed phase in phase space, applicable also when interactions with a surface 
are included. 
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Models in which an interacting directed polymer is allowed to adsorb to a 
substrate have been the focus of much attention recently. (1-8) Essentially 
this has stemmed from the possibility of calculating analytical results for 
such models and the relative ease of numerical calculations relative to the 
isotropic case. These studies have advanced the understanding of dilute 
solutions of polymers in contact  with a substrate where monomer -  
monomer  interactions result in a collapse transition. The directed polymer 
problem appears to contain much of the physics of the isotropic case. 
Extended, collapsed, and bound phases are observed and the delineation of 
the phase diagram and calculation of associated exponents are of continu- 
ing interest. Exact calculations of the collapsed phase boundary in the 
monomer-monomer/surface interaction plane have been previously given; 
these calculations have relied on a conjecture relating to the position held 
by the collapsed phase in the full parameter space. (4"5'7) Igloi ~6) presented 
an argument indicating that these conjectures were correct, based on a 
transfer formulation of the problem. In a recent paper Brak e ta l .  ~18) pre- 
sented a proof for the location of the collapse transition in the bulk which 
did not  contain such an assumption. In this communication we present a 
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proof for the position of the boundary of the collapsed phase by mapping 
the system onto a novel polygon problem, giving a physically appealing 
and easily understood proof applicable also when a surface is present. 

The model which has been most widely studied represents a polymer 
by a two-dimensional random walk on a square lattice which is directed, 
in the sense that steps in the negative x direction are not allowed, as shown 
in Fig. 1. The walk is allowed to gain an energy K for each visit to the 
adsorbing substrate and an energy J for every pair of nonconsecutive steps 
which fall in the same row, but adjacent columns. 

The grand canonical partition function can be written 

LY= ~ COLK;Z" (1) 
w a l k s  

where co is the step fugacity, ~=exp(-K/kBT ), and z=exp(-J/kBT). 
Here L is the number of monomers in the walk, l the number of visits to 
the wall, and n the number of monomer-monomer interactions. 

This model has the phase diagram in the (~, z) plane shown in Fig. 2 
with o~ adjusted to achieve the thermodynamic limit, where 

log L~ 
<L> (2) 

log co 

the average number of monomers, diverges. 
It is also interesting to consider the structure of the phase diagram in 

the (co, z) plane, (3'4) which is shown in Fig. 3 for the case x =  1. The 
equation of the line bounding the collapsed phase in this plane is given 

Ny 

Jill 

x 

Fig. 1. A directed polymer confined to a lattice of width Ny. Monomer-monomer interactions 
J and monomer-surface interactions K are depicted by dotted and bold lines, respectively. 
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Fig. 2. The phase diagram of a directed polymer in the (~c = exp[ -K/ka  T]o z = exp[-J/kB T] ) 
plane. The boundary between the extended and bound phases is based on the numerical 
results of Veal et al. [ 3 ]  and is shown schematically. The boundary of  the collapsed phase is 
an exact result [5, 6] .  
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Fig. 3. Phase diagram in the (~o, z) plane for x = 1. The dotted line is schematic; the full line 
is ogz = 1. In region I the polymer is finite; in region II it is infinite, but with zero density, and 
in region III it is infinite and space filling. 
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by 09z = 1. This conclusion has been based on numerical and heuristic 
arguments. Brak et  al. (~) have recently presented a rigorous proof  of the 
location of this boundary for the case rc = 1. Here we present an alternative, 
more physical, proof. 

If the smallest perimeter is drawn around the polymer so as to enclose 
all the steps of the walk and all the monomer-monomer  interactions, as 
shown in Fig. 4, then the number of r bonds is equal to the number of 
plaquettes enclosed. If we also associate a step with each plaquette, then 
the number of excess steps is equal to half the number of bonds in the 
enclosing perimeter. In this way the directed polymer model has been 
mapped onto a polygon model on a square lattice with an area fugacity of 
coz and a perimeter fugacity of co 1/2. These polygons are similar to those 
studied by Fisher e t  aL, (9) although they are not  self-avoiding, in that con- 
figurations in the directed polymer problem which consist of a column with 
no monomer-monomer  interactions correspond to configurations in the 
polygon problem where the top and bot tom edges touch. The mapping 
enables us to employ the elegant techniques used in the paper of Fisher 
et  al. (9) to prove the location of the boundary of the collapsed phase. 

Let vm(n) be the number of polygons with m edges and area n. Let 

p~ = Y~ ~m(n) (3) 
n 

and define the area generating function 

e,.(y) = ~ v,.(n) yn (4) 
n 

where y = ogz is the area fugacity for the polygon problem. 

fiiiiiill 

(a) (b) 

Fig. 4. (a) A polymer configuration with the monomer-monomer interactions denoted by 
dotted lines. (b)The equivalent polygon. 
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Looking first at a fixed perimeter, it is apparent that the largest 
possible area which can be enclosed by a polygon is rn2/16 if m is divisible 
by 4, or (m2-4) /16  otherwise. Since all the terms in Pro(Y) are non- 
negative, Pro(Y) must be at least as large as any of them. Choosing the term 
corresponding to the largest area and considering y > 1, this gives 

Similarly, 

log y 
lim m -2log Pro(Y) >~ 16 (5) 

m ~  

Pro(Y) <~ Pm Y m2/16 (6) 

Since the polygons under investigation are a subset of all possible closed 
loops, Pm must be bounded above by the total number of random walks 
of length m, that is, 

Pm ~< exp(m log q) (7) 

where q is the coordination number for the lattice, in this case 4. It follows 
from (5) and (6) that 

log y 
iim m -2log Pro(Y) = 16 (8) 

m ~ c Q  

As the average area is given by 

0 log Pro(Y) 
( n )  = (9) 

~3 log y 

and since here the differentiation and limits commute, ~ 

1 
lim m - 2 ( n )  =T~ (10) 

r n ~ o o  

Hence, as long as y >  1, the average area for the polygon model will 
diverge as the perimeter is taken to infinity. The area of the polygons maps 
into the number of monomer-monomerinteractions in the polymer model 
and therefore this behavior corresponds to a polymer collapsing into a 
space-filling configuration. 

If we now focus our attention on y~< 1, we can easily see that 
Pro(Y) <~ P,,. As before, Pro(Y) must be at least as large as any single term 
in the sum, in particular the term with the smallest area. In this case this 
is zero (as the polygons are not self-avoiding), that is, 

P,.(y) >1 v,.(o) (1 I) 

As there is at least one configuration with zero area, vm(O)>1 1. 
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Since Pm ~< exp(4m), it follows immediately that  

lim m -2  log Pro(Y) = 0  (12) 
m ~ o o  

Compar ing  Eqs. (8) and  (12), it is immediately apparen t  that  
l imm_~  m -2  lOgPm(y )  is zero up to and including y = c o t =  1 and then is 
nonzero for  y > 1, showing that  there is a phase transit ion at e)t = 1. 

We expect this a rgument  to hold even when x ~ 1, as the effect of  the 
contact  with the bounda ry  will only enter along an edge, resulting in a 
change in the effective perimeter  fugacity. The locat ion of  the transi t ion is 
independent  of  this value, and hence will remain unaltered. 

In this paper  we have mapped  a directed interacting po lymer  on to  a 
new polygon  model. In this way we have given a physically appeal ing p roof  
for the posi t ion of  the b o u n d a r y  of the collapsed phase. 
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